波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

CityU researchers develop a self-supervised AI adaptation framework to enhance sensing accuracy of EMG devices

 

Surface electromyography (EMG) has been widely used to measure the electrical activity of muscles. However, the variability in EMG sensing signals due to biological differences of different users significantly degrades the performance and potential of EMG systems. Recently, researchers from City University of Hong Kong (CityU) developed a deep learning-based framework called EMGSense, which can achieve high sensing performance for new users using AI self-training techniques. This opens a new path for developing more advanced and accurate wearable EMG devices in areas like neurorehabilitation and virtual reality.

This latest invention won an award at the 21st International Conference on Pervasive Computing and Communications (PerCom 2023) held at Atlanta, USA. It helps overcome the bottleneck in existing approaches and supports the widespread adoption of EMG-based applications.

emg device
EMG-based sensing has created a lot of intelligent applications.
Photo Credit: Dr Xu Weitao / City University of Hong Kong

EMG measures the electrical activity of muscles using surface electrodes on the skin. EMG-based sensing has attracted considerable attention in recent years and has created a lot of intelligent applications, such as neurorehabilitation, activity recognition, gesture recognition and virtual reality. But a fundamental challenge in existing EMG systems is how to tackle cross-user scenarios. EMG signals can be seriously influenced by various biological factors, such as body fat, skin conditions, age and fatigue. So significant performance degradation would be caused by time-varying biological heterogeneity when the EMG system is employed by different users.

To address this challenge, researchers from the Department of Computer Science at CityU recently proposed the first low-effort, AI-empowered domain adaptation framework, called EMGSense, which provides high-accuracy EMG sensing for new users using AI-training techniques. EMGSense is a self-supervised system with a self-training AI strategy. It can cope with the performance degradation caused by inter-user biological heterogeneity.

The new framework integrates advanced self-supervised techniques into a carefully designed deep neural network (DNN) structure. It uses small-scale unlabeled data from a new user and pre-collected data from several existing users to train a discriminative model to realize intelligent applications for new users. The pre-collected data is stored in the cloud and can serve all new users, reducing the burden of data collection and annotation.

emg device
The key principle of the method is the shared common feature extractor, whose aim is to ensure the transferability of features. The combination of domain-specific feature extractors and classifiers are responsible for independently exploring the diversity among the deep features from different source domains.
Photo credit: Di, D. et al, https://ieeexplore.ieee.org/document/10099164/authors

EMGSense’s DNN structure involves two training stages, which complement each other. It first eliminates user-specific features in the feature space for easy transferring, and then it employs AI techniques to re-learn new target’s user-specific biological features in that space for high-performance EMG sensing. This allows EMGSense to adapt to new users with satisfactory performance in a low-effort, self-supervised manner without wasting significant deployment overhead.

In addition, the researchers leveraged the unlabeled data collected during the usage to achieve long-term robust performance that can handle the time-varying nature of EMG signals.

A comprehensive evaluation of two sizable datasets collected from 13 participants indicated that EMGSense achieved an average accuracy of 91.9% and 81.2% in gesture recognition and activity recognition, respectively. EMGSense also outperformed state-of-the-art EMG-oriented domain adaptation approaches by 12.5%–17.4% and achieved comparable performance with one trained in a supervised-learning manner.

EMG device
The paper’s authors, Mr Duan Di (middle) and Mr Yang Huanqi (2nd from left), received the Best Paper Award at Percom 2023, held in Atlanta, USA. Photo credit: Duan Di / City University of Hong Kong

The novel EMGSense framework has the potential to revolutionize the field of EMG sensing by reducing the burden of data collection and annotation, while achieving high accuracy in a low-effort manner. It fills the research gap in heterogeneity problems in EMG sensing and enables a variety of novel EMG-based cross-user applications, such as clinical practice, neurorehabilitation and human-machine interaction. It also makes a humble step towards the ubiquity of smart EMG wearable devices with higher performance in real-world scenarios.

The paper was published at the PerCom 2023, and it won the “Mark Weiser Best Paper Award”. The paper title is “EMGSense: A Low-Effort Self-Supervised Domain Adaptation Framework for EMG Sensing”.

EMG device
Dr Xu Weitao (4th from left) and his research team from City University of Hong Kong. Photo credit: Dr Xu Weitao / City University of Hong Kong

The first author of the research is Mr Duan Di, a PhD student in the Department of Computer Science at CityU. The corresponding author is Dr Xu Weitao, Assistant Professor in the same department. Other team members from CityU include Professor Jia Xiaohua and Mr Yang Huanqi. The research is supported mainly by the Hong Kong Research Grant Council and General Research Fund.

 

 

Contact Information

Back to top
大发888 下载| 百家乐翻天粤语版| 大发888常见断续| 元游视频棋牌游戏| 百家乐官网正负计算| 澳门百家乐网址多少| 灵山县| 大发888为什么打不开| 百家乐官网出千工具价格| 威尼斯人娱乐城注册网址| 阴宅24山吉凶| 临沂市| 全讯网备用网址| 发中发百家乐官网的玩法技巧和规则 | 阴宅风水24山分金| 武宣县| 百家乐娱乐城体验金| pc百家乐官网模拟游戏| bet365娱乐场注册| 百家乐大西洋城| 女神百家乐官网娱乐城| 皇冠网小说网站网址| 百家乐投注平台信誉排名| 云鼎百家乐官网程序开发有限公司| 大发888游戏在线客服| 百家乐博彩优惠论坛| 女神百家乐官网娱乐城| 江永县| 百家乐清零| 百家乐官网筹码托盘| 鄂伦春自治旗| 克拉克百家乐官网试玩| 芝加哥百家乐的玩法技巧和规则| V博百家乐官网的玩法技巧和规则 中骏百家乐官网的玩法技巧和规则 | 找查百家乐玩法技巧| 百家乐游戏公司| 博天堂百家乐官网官网| 老牌百家乐官网娱乐城| 博彩行业| 水果机教程| 德州百家乐扑克桌|