波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

An efficient electrochemical intercalation method for high-yield production of TMD nanosheets

 

Two-dimensional (2D) transition metal dichalcogenides (TMDs), an emerging class of materials that can be used as semiconductors and insulators, have promising potential in various applications due to their unique properties. But the reliable production of these atomically thin 2D materials has been challenging. A research team led by a material scientist from City University of Hong Kong (CityU) has developed an efficient electrochemical exfoliation method to achieve high-yield production of TMD nanosheets. This new strategy lays a new direction for mass production of TMD nanosheets for wide application in future.

The research team was led by Dr Zeng Zhiyuan, Assistant Professor in CityU’s Department of Materials Science and Engineering (MSE), in collaboration with scientists from the University of Montpellier and Ulsan National Institute of Science and Technology (UNIST). Their findings were published in the academic journal Nature Protocols, under the title “High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method”.

A simple method that offers a higher degree of control

Previously, TMD nanosheets can be produced by a chemical method called lithium ion intercalation-based exfoliation. Intercalation means the insertion of a molecule or ion into materials that have layered structures. If every layer is intercalated with lithium ions, then materials with monolayers will be produced after ultrasound sonication and exfoliation; if only parts of the layers are intercalated with lithium ions, then the result will be bi- or few-layer products. 

However, this traditional chemical method needs to be carried out at a relatively high temperature up to 100 °C and for a long time, some may take three days. More importantly, it is difficult to control the amount of lithium insertion.

tmd nanosheet
Schematic illustrations of the electrochemical lithium ion intercalation-based exfoliation process. (Yang, R., Mei, L., Zhang, Q. et al. /DOI number: 10.1038/s41596-021-00643-w)

 

To overcome the above challenges, Dr Zeng and his team adopted an electrochemical approach to synthesise the mono- or few-layer inorganic nanosheets. “The method we developed is relatively simple and straightforward, and it offers a higher degree of control under mild conditions. Using our method, high-yield preparation of monolayer TMD nanosheets can be easily conducted at room temperature of about 25 ℃ within 26 hours,” said Dr Zeng.

Their electrochemical lithium ion intercalation-based exfoliation method involves three simple steps: electrochemical intercalation of lithium ion into layered bulk materials, followed by a mild ultrasound sonication process in deionised water or ethanol for 5 to 10 minutes, and lastly, exfoliate and centrifuged to get the purified 2D nanosheets.

tmd nanosheet
By using this battery testing system, the amount of intercalated lithium ions in layered materials can be controlled effectively by tuning the cutoff voltage. (DOI number: 10.1038/s41596-021-00643-w)

 

Dr Zeng pointed out that using their method, the amount of lithium intercalation can be controlled effectively by tuning the cutoff voltage. “This superior feature can make the lithium intercalation process stop at an appropriate lithium amount,” he added.

High-yield production of monolayer TMD nanosheets

Dr Zeng highlighted the four advantages of this electrochemical approach. Firstly, a high yield of monolayer TMD is achieved. Taking MoS2 and TaS2, two kinds of TMDs they studied, as examples, among the 2D nanosheets prepared with this method, over 90% of them (92% for MoS2 and 93% for TaS2) were single layer, while the rest of the 8% and 7% were double layers, trilayers, or even multi-layers.

Secondly, they could fabricate monolayer TMD nanosheets in a large lateral size. The lateral size of the MoS2 monolayer the team obtained by this preparation method can reach 3 μm.

Thirdly, their procedure is scalable. The team believes that further scale-up of production of monolayer TMD nanosheets for industry applications can be realised by increasing the bulk TMD amount from milligrams (mg) to grams (g), or even tons. And lastly, their TMD nanosheets are solution-processable and printable. They could be widely and evenly dispersed in aqueous solution without adding a surfactant, and could be used as ink in printing technology.

tmd nanosheet
Images of the exfoliated nanosheets of a, MoS2. b, WS2. c, TiS2. d, TaS2. e, BN. f, NbSe2. Mono- and few-layer inorganic nanosheets were successfully produced by this method. (DOI number: 10.1038/s41596-021-00643-w)
tmd nanosheet
TMD nanosheets the team obtained are solution-processable and printable. (DOI number: 10.1038/s41596-021-00643-w)

TMD nanosheets with wide application

“Our method is a mature, efficient and promising strategy for the high-yield production of mono- or few-layer TMD nanosheets,” concluded Dr Zeng, who has studied the mass production of 2D TMD materials for over 10 years.

The team believed that their method for high-yield and mass production of mono- or few-layer TMD nanosheets would open a new direction for basic and applied research, attracting the attention of both academia and industry. “The TMD nanosheets prepared by this method could be widely applied in various fields such as gas-sensing, memory devices, detection of biomolecules, electrocatalytic hydrogen evolution, light‐emitting diodes and lithium-ion battery,” he added.

tmd nanosheet
Dr Zeng Zhiyuan, Assistant Professor in CityU’s Department of Materials Science and Engineering. (City University of Hong Kong)

Dr Zeng, Dr Damien Voiry from the University of Montpellier, and Professor Hyeon Suk Shin from the Ulsan National Institute of Science and Technology are the corresponding authors of the paper. The first authors are Mr Yang Ruijie (former team member of Dr Zeng’s CityU Group), Mr Mei Liang and Mr Zhang Qingyong, both are PhD candidates supervised by Dr Zeng. Miss Fan Yingying (a former team member) also participated in the research.

The research received funding support from CityU, the Research Grants Council of Hong Kong, the Shenzhen Science and Technology Innovation Commission, and the National Research Foundation of Korea.

DOI number: 10.1038/s41596-021-00643-w

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
百家乐官网桌布无纺布| 蓝盾百家乐打法| 百家乐官网唯一能长期赢钱的方法 | sz全讯网xb112| 百家乐官网平注常赢打法| 威尼斯人娱乐城送宝马| 新锦江百家乐官网的玩法技巧和规则 | 太阳城娱乐官方网站| 老人头百家乐官网的玩法技巧和规则 | 百家乐官网技术秘籍| 运城百家乐的玩法技巧和规则| 百家乐官网开户首选| 大发888真人游戏| 百家乐娱乐城游戏| 查看百家乐官网赌博| 大发888娱乐官方下载| 百家乐娱乐天上人间| 真人百家乐官网策略| 网络博彩公司| 郑州百家乐高手| 电脑百家乐官网的玩法技巧和规则 | 百家乐官网视频表演| 大发888真钱帐户注册| 百家乐视频游戏注册| 致胜百家乐官网下载| 真人百家乐| 大发888体育开户| 百家乐园鼎丰娱乐城| 新西兰百家乐官网的玩法技巧和规则| 虹口区| 优博代理| 威尼斯人娱乐城是骗子| 新锦江百家乐娱乐场| 云鼎百家乐官网的玩法技巧和规则 | 百家乐辅助器| 网上百家乐哪里好| tt百家乐官网的玩法技巧和规则 | 百家乐浴盆博彩通排名| 苹果百家乐官网的玩法技巧和规则 | 20人百家乐桌| 金海岸百家乐娱乐城|