波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Kondo cloud finally observed after half-century

 

A physicist from City University of Hong Kong (CityU) plays a major role in the world’s first direct measurement of a Kondo cloud more than 50 years after the initial theory was first expounded.

Dr Ivan Valerievich Borzenets, Assistant Professor in the Department of Physics, has helped to reveal the first experimental evidence of a Kondo cloud.

The Kondo cloud was theorised half a century ago but until now it has not been observed, according to Dr Borzenets, who has worked on the Kondo project as part of an international research team.

This breakthrough in condensed matter physics could contribute to further understanding multiple impurity systems such as high temperature superconductors, he added. High temperature superconductors can be used in a variety of applications such as energy storage system and medical equipment.

The Kondo cloud describes the area around the magnetic impurity where the Kondo effect plays a role. The experiment offers proof that the size, or length, of a Kondo cloud and Kondo temperature are related mathematically. 

This confirmed observation marks an important milestone after more than 55 years since the theory was first postulated by Japanese theoretical physicist Dr Jun Kondo.

“The Kondo temperature is the critical temperature where the Kondo effect starts to play a role,” said Dr Borzenets. In metals, electrical resistance usually falls as the temperature drops. But if there are some magnetic impurities in the metal, resistance will drop at first. When a threshold temperature is reached, resistance will increase as the temperature decreases further.

“We hope the findings can provide insights into the understanding of multiple impurity systems such as Kondo lattices, spin glasses and high transition-temperature superconductors,” explained Dr Borzenets, the lead author of an article titled “Observation of the Kondo screening cloud” published in the latest edition of the prestigious scientific journal Nature.

Following repeated experiments with a device specially developed by the team over a three-year period, the cloud was measured as a few micrometres across. 

It is challenging to isolate and manipulate both a single magnetic impurity and a single cloud. Now, with the instrument developed by the international research team and the application of quantum mechanics, this has been achieved. The impurity was housed in a quantum dot, also referred to as a “conducting island”, that is a just a few hundred nanometres wide. The cloud was confined in a quasi-one dimensional channel (an interferometer), the manipulation of which allowed the team to detect and control the cloud length.

Dr Borzenets was joined on the project by Dr Shim Jeong-min and Professor Sim Heung-sun of the Korea Advanced Institute of Science and Technology; Dr Jason C.H. Chen of the University of Tokyo; Dr Arne Ludwig and Professor Andreas D. Wieck of Ruhr-University Bochum, Germany; and Professor Seigo Tarucha and Dr Michihisa Yamamoto of RIKEN Centre for Emergent Matter Science, Japan.

Notes to editors: 

Filename: Photo_01
Caption: Dr Borzenets plays a major role in the world’s first direct measurement of a Kondo cloud.

Filename: Photo_02
Caption: Schematic illustration of the Kondo cloud detection (graphic design: Dr Shim Jeong-min)


Media enquiries: Eva Choy, Communications and Public Relations Office (Tel: 3442 9325 or 9787 7671)

To download photo -- (Remark: Copyrights belong to CityU. Use of the photo(s) for purposes other than reporting the captioned news story is restricted.)

YOU MAY BE INTERESTED

Back to top
稳赢百家乐的玩法技巧| 威尼斯人娱乐场首页| 澳门百家乐家用保险柜| 大发888娱乐场是真是假| 送彩金百家乐官网平台| 凯斯百家乐的玩法技巧和规则 | 赌博中百家乐什么意思| 百家乐官网风云人物| 百家乐喜牛| 百家乐官网赌场代理荐| 威尼斯人娱乐场开户注册| 做生意摆放龙龟方向| 遂昌县| 威尼斯人娱乐城平台打不开| 百家乐官网群lookcc| 门头沟区| 定制百家乐桌子| 皇室百家乐娱乐城| 百家乐官网赌场破解| 8大胜| 博彩百家乐的玩法技巧和规则| 百家乐官网最新的投注方法| 青鹏棋牌游戏大厅v3.0| 百家乐三路法| 百家乐官网筹码套装100片| 忻州市| 百家乐官网赌博论坛在线| 长沙县| 顶尖娱乐城开户| 名仕百家乐的玩法技巧和规则| 百家乐官网园qq群| 百家乐官网赌场讨论群| 百家乐官网投注打三断| 博彩网站排名| 百家乐娱乐场真人娱乐场| 百家乐的嬴钱法| 百家乐官网规律和方法| 百家乐官网真人娱乐注册| tt娱乐城网址| 网络棋牌室| 威尼斯人娱乐客户端|