波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

CityU’s new technology prevents post-surgery bacterial infection

Emily Law

 

chu
Research team includes Professor Paul Chu Kim-ho (left) and PhD student Wang Guomin.

 

A research team led by Professor Paul Chu Kim-ho, a materials engineering expert at City University of Hong Kong (CityU), has developed a capacitive coating that kills bacteria when it is charged with electricity. When applied to orthopedic implants such as artificial joints and dental implants, the novel technology can reduce the risk of infection after surgery and help patients recover more quickly.

Professor Chu, Chair Professor in the Department of Physics and the Department of Materials Science and Engineering, and his research team discovered that TiO2 nanotubes doped with carbon (TNT-C) can kill bacteria continuously for a period of time after charging with a small electrical current. Their research has been published recently in the international journal Nature Communications.

The technology is based on previous innovations by Professor Chu and his team on killing bacteria in wounds using a high-voltage plasma jet. This new technology can be applied to materials implanted inside the human body.

In their experiments, the team tested bacteria such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermidis that can grow on implants after a patient undergoes surgery. Professor Chu said the TNT-C could kill bacteria after being charged for 15 minutes with a small direct current of less than 2 volts.

He explained that the positive electrode on the surface of the nanotube coating destroys the cell membranes of the bacteria without affecting normal cells. The capacitive coating kills over 90% of the above mentioned bacteria and the effect lasts for more than five hours after each charging cycle. The effectiveness of the treatment can be maintained for over several weeks if the coating is repeatedly charged.

By adding such a capacitive coating to orthopedic implants like artificial joints or dental implants together with a built-in micro charging device or through wireless charging, the new technology can protect patients from infection after surgery. Throughout the healing process, the technology does not produce any harmful side effects in patients and charging can stop after they have recovered.

“We are very excited about the research outcome,” Professor Chu said. “Currently, patients have to take medication such as antibiotics in the early post-surgery stage to prevent bacterial infection. However, problems such as drug resistance or other side effects may develop. This new technology of charging TNT-C does not have any side effects, and the coating can retain electrical charges to kill bacteria for an extended period of time. This groundbreaking technology can reduce complications arising from bacterial infection and improve the well-being of patients.”

Also, the new technology is demonstrated to have prevented the formation of biofilms that may otherwise cause resistance to medicines like antibiotics.

Professor Chu said the early results of the project, titled “An Antibacterial Platform Based on Capacitive Carbon-Doped TiO2 Nanotubes after Charging with Direct / Alternating Currents”, had been very encouraging. With clinical trials to follow, he hoped that the technology would be applied to medical treatment in the future.   

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐平台信誉| 百家乐筹码盒| 碧桂园太阳城二手房| 大发888官方df888gfxzylc8| 老虎机控制器| 明珠国际| 大发888洗码| 百家乐官网模拟游戏下载| 香港百家乐的玩法技巧和规则| 大发888排行| 金宝博百家乐官网娱乐城| 真人百家乐官网打法| 百家乐单注打法| 属狗的和虎的做生意好吗| 威尼斯人娱乐城怎么玩| 华克山庄| 阴宅风水纳水与24山向水口详解| 免费百家乐计划软件| 澳门百家乐官网登陆网址| 百家乐怎么玩能赢钱| 大富豪棋牌游戏中心| 免费百家乐官网预测工具| 北京太阳城老年公寓| 百家乐官网翻天粤语下载| 威尼斯人娱乐城线路lm0| 大发888官方zhuce| 豪享博百家乐官网的玩法技巧和规则| 百家乐实战玩法| 长武县| 百家乐游戏玩法技巧| 合肥市| 利来百家乐娱乐| 菲律宾百家乐官网娱乐| 大发888游戏平台 送1688元礼金领取lrm | 百家乐官网视频计牌器| 澳门百家乐官网赢钱| 大发888游戏平台| 百家乐必胜下注法| 百家乐官网下注稳赢法| 威尼斯人娱乐城安全吗| 做生意养猫风水|