波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

CityU Scientists Report Breakthrough In Disruptive Perovskite Solar Tech

A research team from City University of Hong Kong (CityU) made a breakthrough by developing an innovative multifunctional and non-volatile additive which can improve the efficiency and stability of perovskite solar cells. The improvement comes by modulating perovskite film growth using a simple and effective strategy that has great potential for facilitating the commercialization of PVSCs.

The reporting of the discovery has been published in Nature Photonics. Perovskite solar cells (PVSCs) are a promising alternative to traditional silicon-based solar cells because of their high power-conversion efficiency and low cost. However, one of the major challenges in their development has been achieving long-term stability.

Photo of a 1 cm2  perovskite   solar  cell with  additive. Image Credit: City University of Hong Kong. For more information and images click the press release link.

Professor Alex Jen Kwan-yue, Lee Shau Kee Chair Professor of Materials Science and Director of the Hong Kong Institute for Clean Energy at CityU, who led the study explained, “This type of multifunctional additive can be generally used to make different perovskite compositions for fabricating highly efficient and stable perovskite solar cells. The high-quality perovskite films will enable the upscaling of large-area solar panels.”

PVSCs have attracted significant attention due to their impressive solar power conversion efficiency (PCE). Since perovskites can be deposited from solutions onto the fabrication surfaces, PVSCs have the potential to be applied in building-integrated photovoltaics (BIPV), wearable devices, and solar farm applications. However, the efficiency and stability are still affected by the severe energy loss associated with defects embedded at the interfaces and grain boundaries of the perovskites. Therefore, the intrinsic quality of perovskite film plays a critical role in determining the achievable efficiency and stability of PVSCs.

Although many previous research studies have focused on improving the film morphology and quality with volatile additives, these additives tend to escape from the film after annealing, creating a void at the perovskite-substrate interface.

To solve these issues, the CityU researchers developed a simple but effective strategy of modulating the perovskite film growth to enhance the film quality. They found that by adding a multifunctional molecule (4-guanidinobenzoic acid hydrochloride, (GBAC)) to the perovskite precursor, a hydrogen-bond-bridged intermediate phase is formed and modulates the crystallization to achieve high-quality perovskite films with large perovskite crystal grains and coherent grain growth from the bottom to the surface of the film. This molecule can also serve as an effective defect passivation linker (a method to reduce the defect density of perovskite film) in the annealed perovskite film due to its non-volatility, resulting in significantly reduced non-radiative recombination loss and improved film quality.

The test experiments showed that the defect density of perovskite films can be significantly reduced after introducing GBAC. The power conversion efficiency of inverted (p-i-n) perovskite solar cells based on the modified perovskites was boosted to 24.8% (24.5% certified by the Japan Electrical Safety & Environment Technology Laboratories), which is among the highest values reported in the literature. Also, the overall energy loss of the device was reduced to 0.36eV, representing one of the lowest energy losses among the PVSC devices with high power conversion efficiency.

Additionally, the unencapsulated devices exhibit improved thermal stability beyond 1,000 hours under continuous heating at 65 ± 5°C in a nitrogen-filled glovebox while maintaining 98% of the original efficiency.

The team demonstrated the general applicability of this strategy for different perovskite compositions and large-area devices. For example, a larger area device (1 cm2) in the experiment delivered a high PCE of 22.7% with this strategy, indicating excellent potential for fabricating scalable, highly efficient PVSCs.
Professor Jen noted, “This work provides a clear path to achieving optimised perovskite film quality to facilitate the development of highly efficient and stable perovskite solar cells and their upscaling for practical applications.”

In the future, the team aims to further extend the molecular structures and optimize the device structure through compositional and interfacial engineering. They will also focus on the fabrication of large-area devices.
Professor Jen is the corresponding author of the research. The co-first authors are Miss Li Fengzhu and Dr Deng Xiang from Professor Jen’s research group. Other team members from CityU include Dr Chen Xiankai, Dr Tsang Sai wing, Dr Yang Zhengbao, Dr Francis Lin and Dr Wu Shengfan.

Perovskite solar cells have been generating news for years now. At the beginning it was lead in the compound and over time that issue has slowly slipped from view. Now the long lasting matter of longevity is still bedeviling the progress.

 Read More

百家乐永利娱乐场| 大发888娱乐场开户| 百家乐百博亚洲| 网上现金百家乐| 新手百家乐指点迷津| 龙游县| 百家乐高级技巧| 百家乐官网庄闲收益率| 百家乐追号软件| 百家乐官网网站平台| 大发888娱乐城 df888ylc3403| 百家乐官网倍投工具| 欢乐谷线上娱乐| 百家乐金海岸软件| 百家乐官网龙虎台布价格| 飞七棋牌游戏下载| 至尊百家乐下载| 百家乐官网永利娱乐城| 免费百家乐计划| 24鸡是什么命| 如何玩百家乐官网扑克| 真人游戏网站| 百家乐双面数字筹码| 百家乐官网必胜方程式| 肇东市| 百家乐赌场大赢家| 百家乐官网稳赢玩法| 大发888游戏网页版| 宾利百家乐游戏| 澳门百家乐官网娱乐城送彩金| ,大发扑克下载| 百家乐官网天下| 百家乐官网开线| 利来备用| 德州扑克高手| 澳门百家乐官网如何算牌| 威尼斯人娱乐网站怎么样| 百家乐官网倍投工具| 百家乐官网娱乐城官方网| 江达县| 银河国际娱乐城|