波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

CityU researchers invented a novel device enabling high-resolution observation of liquid phase dynamic processes at nanoscale

In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team led by a scholar from City University of Hong Kong (CityU) recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.

The use of conventional TEM is limited to thin, stable and solid samples because of the vacuum environment (a vacuum environment prevents the electrons from being absorbed or deflected along their pathways and affecting observation) in the chamber for holding the specimens. Liquid specimens are vacuum-incompatible, so they cannot be directly probed in traditional TEM. Fortunately, with the emergence of the more advanced in-situ “liquid cell TEM”, it is possible to study liquid phase dynamic processes in situ, such as observing crystal nucleation and growth in solution, electrochemical reactions in energy devices, and the life activities of living cells. The “liquid cell” is a core component of TEM to hold the specimens for the electron beam to pass through, thus enabling in-situ observation. But it is challenging to manufacture a high-quality liquid cell for TEM because it involves incorporating electrodes and encapsulating electrolytes in a tiny “closed” liquid cell to prevent leakage and connect it to an external power source at the same time.

Schematic illustration of the electrochemical liquid cell.
Schematic illustration of the electrochemical liquid cell.
Credit: ? Yang, R. et al. https://www.nature.com/articles/s41596-022-00762-y

A research team co-led by Dr Zeng Zhiyuan, Assistant Professor in the Department of Materials Science and Engineering at CityU, and Professor Li Ju from the Massachusetts Institute of Technology (MIT) successfully developed an efficient and novel method to fabricate “closed” electrochemical liquid cells, which can greatly improve the resolution of TEM with liquid samples.  

“The newly developed closed liquid cell performs two main jobs: (1) enclosing the liquid samples in a closed container, thereby separating them from the microscope vacuum environment; and (2) confining the liquid samples to a thin enough liquid layer using two electron-transparent silicon nitride (SiNx) windows, so that electrons can travel through the liquid layer and image the reactions,” explained Dr Zeng.

To manufacture the high-performance, “closed” electrochemical liquid cells in this protocol, the research team used advanced nanofabrication techniques, including photolithography, to fabricate the core component of in situ liquid TEM – the liquid cell. Photolithography is a process that uses ultraviolet light to transfer a geometric design from an optical mask to a light-sensitive chemical (photoresist) coated on the substrate.

The team fabricated the bottom chip and top chip separately, and then assembled them together. Gold or titanium electrodes were deposited on the bottom chip during the metal deposition process. Then the electrolyte was loaded and sealed inside the liquid cell.

Using this innovative liquid cell with the transmission electron microscope, the dynamic electrochemical reactions of the liquid sample on the electrode surface can be recorded in real time at high resolution through the TEM operating system incorporated with a high spatio-temporal resolution camera.

“The electrochemical liquid cell designed by our customized nanofabrication method has thinner SiNx imaging windows (35nm) than commercial ones (50nm),” explained Dr Zeng. “It also has a thinner liquid layer (150nm) than that of commercial ones (1,000 nm). The thinner SiNx imaging windows and thinner liquid layer ensure that our fabricated liquid cell can capture electrochemical reactions with better TEM spatial resolution than commercial ones can.”

Fabrication process of the electrochemical liquid cell. Credit: ? Yang, R. et al. https://www.nature.com/articles/s41596-022-00762-y

The team believes that a lot of opportunities and applications for the in-situ TEM observation of electrochemical reactions will emerge soon after the development of the electrochemical liquid cell with the selection of patterned metal electrodes and the encapsulated liquid electrolytes in the liquid cell.

This newly proposed fabrication protocol can also be utilized in other in-situ techniques beyond TEM. For example, a proper adjustment to this protocol would be suitable for the fabrication of electrochemical liquid cells for in-situ X-ray characterizations of electrochemical reactions (X-ray absorption spectroscopy, X-ray diffraction, etc.).

Dr Zeng Zhiyuan, cityu
Dr Zeng Zhiyuan (front row, right) and his research group from the Department of Materials Science and Engineering at City University of Hong Kong.Credit: City University of Hong Kong

The findings were published in the scientific journal Nature Protocols, titled “Fabrication of Liquid Cell for In-Situ Transmission Electron Microscopy of Electrochemical Processes”.

Dr Zeng, from CityU, and Professor Li, from MIT, are the corresponding authors of the paper. The first author is Mr Yang Ruijie, from Dr Zeng’s research group. Other collaborators are from Xiamen University and Xi’an Jiaotong University.

The work was supported by the Hong Kong Research Grants Council and the Shenzhen Science and Technology Innovation Committee.

In situ TEM observation of electrochemical processes and post-in situ characterizations. Credit: ? Yang, R. et al. https://www.nature.com/articles/s41596-022-00762-y

象棋赌博网| 百家乐官网书包| 大发888缺少casino组件common| 赌博百家乐官网判断决策| 方形百家乐筹码| 王子百家乐官网的玩法技巧和规则 | 大发888真钱下载| 加州百家乐官网娱乐城| 百家乐必赢术| 百家乐官网技巧介绍| tt线上娱乐城| 百家乐五种路单规| 百家乐官网博娱乐网提款速度快不| 皇冠现金网信誉| 百家乐官网玩法教程| 香港六合彩图| 网上百家乐真坑人| 战神百家乐官网的玩法技巧和规则 | LV百家乐官网娱乐城| 赌百家乐官网咋赢对方| 大发888娱乐城娱乐城| 金臂百家乐开户送彩金| 网页百家乐官网官网| 百家乐赌机凤凰软件| 敦化市| 大发888心得| 作弊百家乐赌具价格| 免费玩百家乐官网的玩法技巧和规则| 六合彩玄机| 菲律宾太阳城网| 百家乐与21点| 皇马百家乐官网的玩法技巧和规则| 百家乐官网分析概率原件| 皇冠足球网址| 大发888娱乐城亚付宝| 百家乐投注规则| 总格24画的名字好吗| 皇冠现金网娱乐城| 太阳城房价| 百家乐蓝盾在线现| 百家乐官网庄闲赢负表|