波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

CityU develops the world's first-ever 4D printing for ceramics

 

Professor Lu Jian (left), Dr Liu Guo and the research team have developed the world's first-ever 4D printing for ceramics.
Professor Lu Jian (left), Dr Liu Guo and the research team have developed the world's first-ever 4D printing for ceramics.

A research team at City University of Hong Kong (CityU) has achieved a ground-breaking advancement in materials research by successfully developing the world’s first-ever 4D printing for ceramics, which are mechanically robust and can have complex shapes. This could turn a new page in the structural application of ceramics. 

Ceramic has a high melting point, so it cannot be cast or shaped easily, and it is difficult to use conventional laser printing to make ceramics. The existing 3D-printed ceramic precursors, which are usually difficult to deform, also hinder the production of ceramics with complex shapes. 

To overcome these challenges, the CityU team has developed a novel “ceramic ink”, which is a mixture of polymers and ceramic nanoparticles. The 3D-printed ceramic precursors printed with this novel ink are soft and can be stretched three times beyond their initial length. These flexible and stretchable ceramic precursors allow complex shapes, such as origami folding. With proper heat treatment, ceramics with complex shapes can be made. 

The team was led by Professor Lu Jian, Vice-President (Research and Technology) and Chair Professor of Mechanical Engineering, who is a distinguished materials scientist with research interests ranging from fabricating nanomaterials and advanced structural materials to the computational simulation of surface engineering. 

With the development of the elastic precursors, the research team has achieved one more breakthrough by developing two methods of 4D printing of ceramics. 

4D printing is conventional 3D printing combined with the additional element of time as the fourth dimension, where the printed objects can re-shape or self-assemble themselves over time with external stimuli, such as mechanical force, temperature, or a magnetic field. 

In this research, the team made use of the elastic energy stored in the stretched precursors for shape morphing. When the stretched ceramic precursors are released, they undergo self-reshaping. After heat treatment, the precursors turn into ceramics. 

The resultant elastomer-derived ceramics are mechanically robust. They can have a high compressive strength-to-density ratio (547 MPa on 1.6 g cm-3 microlattice), and they can come in large sizes with high strength compared to other printed ceramics. 

“The whole process sounds simple, but it’s not,” said Professor Lu. “From making the ink to developing the printing system, we tried many times and different methods. Like squeezing icing on a cake, there are a lot of factors that can affect the outcome, ranging from the type of cream and the size of the nozzle, to the speed and force of squeezing, and the temperature.” 

It took more than two and a half years for the team to overcome the limitations of the existing materials and to develop the whole 4D ceramic printing system. 

In the first shaping method, a 3D-printed ceramic precursor and substrate were first printed with the novel ink. The substrate was stretched using a biaxial stretching device, and joints for connecting the precursor were printed on it. The precursor was then placed on the stretched substrate. With the computer-programmed control of time and the release of the stretched substrate, the materials morphed into the designed shape. 

In the second method, the designed pattern was directly printed on the stretched ceramic precursor. It was then released under computer-programming control and underwent the self-morphing process.

Video explaining the 4D printing for ceramics

The innovation was published in the latest issue of top academic journal Science Advances under the title “Origami and 4D printing of elastomer-derived ceramic structures”. All research team members are from CityU, including Dr Liu Guo, Research Assistant, Dr Zhao Yan, Senior Research Associate, and Dr Wu Ge, Research Fellow. 

“With the versatile shape-morphing capability of the printed ceramic precursors, its application can be huge!” said Professor Lu. One promising application will be for electronic devices. Ceramic materials have much better performance in transmitting electromagnetic signals than metallic materials. With the arrival of 5G networks, ceramic products will play a more important role in the manufacture of electronic products. The artistic nature of ceramics and their capability to form complex shapes also provide the potential for consumers to tailor-make uniquely designed ceramic mobile phone back plates. 

The 3D-printed ceramic precursors printed with the novel “ceramic ink” are soft and stretchable, enabling complex shapes, such as origami folding.
The 3D-printed ceramic precursors printed with the novel “ceramic ink” are soft and stretchable, enabling complex shapes, such as origami folding.

Furthermore, this innovation can be applied in the aerospace industry and space exploration. “Since ceramic is a mechanically robust material that can tolerate high temperatures, the 4D-printed ceramic has high potential to be used as a propulsion component in the aerospace field,” said Prof Lu. 

Riding on the breakthrough in material and 4D-printing technique advancement, Prof Lu said the next step is to enhance the mechanical properties of the material, such as reducing its brittleness. 

The research was supported by the Major Program of National Natural Science Foundation of China, the Hong Kong Collaborative Research Fund Scheme and Theme-based Research Scheme, the Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center, the Guangdong Provincial Department of Science and Technology, and the Science and Technology Innovation Commission of Shenzhen Municipality.

Contact Information

Back to top
百家乐官网娱乐城网址| 百家乐园云鼎娱乐平台| 百家乐试玩| 娱百家乐官网下载| 老虎机下载| 名人百家乐官网的玩法技巧和规则| 大发888娱乐大发体育| 百家乐官网高手投注法| 皇冠百家乐赢钱皇冠| 葡京百家乐官网玩法| 迪威百家乐官网赌场娱乐网规则 | 64风波| 新2百家乐现金网百家乐现金网| 澳门百家乐官网上下限| 百家乐平一直压庄| 百家乐官网必胜绝| 百家乐官网网络投注| 大发888真人游戏平台| 百家乐娱乐城博彩| 百家乐官网玩揽法大全| 大发888真钱| 牌九百家乐官网的玩法技巧和规则 | 百家乐官网博彩技巧视频| 迪士尼百家乐的玩法技巧和规则| 最好的百家乐官网论坛| 威尼斯人娱乐城返佣| 百家乐官网扑克桌| 兄弟百家乐的玩法技巧和规则 | 田林县| 广州百家乐赌场娱乐网规则| 网上百家乐官网大赢家筹码| 久盛| 威尼斯人娱乐城送彩金| 权威百家乐信誉网站| 百家乐官网实战路| 合肥百家乐官网赌博游戏机| 沈阳棋牌网| 大发888 客服| 百家乐博赌场| 百家乐开户首选| 丽都百家乐官网的玩法技巧和规则 |