波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Genetic Algorithm Optimized Deep Learning Model to Forecast Ultra-Short-Term Concentration of Fly Ash From Coal Fired Power Plants

 

In the process of advancing carbon peak and carbon neutrality, energy savings, emissions reduction, the transformation and upgrading of coal-fired power plants are of great significance in China.

The team has established an ultra-short-term time series forecasting model, based on deep learning. The model predicts changes in fly ash concentration emitted from a power plant 1 – 2 minutes in advance. This serves as the core of a control system to dynamically adjust key parameters of the electrostatic precipitator, such as power and voltage, to maximise the efficiency of dust removal and save energy. Commercialisation can be carried out through an Energy Performance Contract, and fees will be charged based on the actual electricity cost saved for the power plant.

 

 

Team members

Mr He Yingjie* (Alumnus, Dept. of Marketing, CityU)
Dr Chu Ying-hao (Shenzhen University)

* Person-in-charge
(Info based on the team's application form)

Achievement(s)
  1. CityU HK Tech 300 Seed Fund (2021)
  2. Entrepreneurship: He Yingjie, Forbes China 30 Under 30, 2019
  3. Start-up Competitions:
    • Outstanding Enterprise Award, the 8th China Innovation & Entrepreneurship Competition
    • National Final in Smart Manufacturing, 2019


线上百家乐官网赢钱| 南宁百家乐赌机| 联众百家乐官网的玩法技巧和规则| 百家乐官网真人游戏赌场娱乐网规则 | 百家乐赌博现金网平台排名| 霞浦县| 超级百家乐官网2龙虎斗| 在线百家乐博彩| 百家乐官网2号技术打法| 百家乐官网分| 皇家娱乐城| 澳门百家乐职业赌客| 棋牌新闻| 百家乐视频连线| 大发888贴吧| 属虎属鼠做生意可以吗| 大发88846| 新濠百家乐官网娱乐城| 巢湖市| 威尼斯人娱乐城最新网址| 万博88真人娱乐城| 百家乐官网园试玩| 大发888娱乐城ipad| 百家乐官网必胜方法如果你还想继续不看可能后悔一生 | 迪士尼百家乐的玩法技巧和规则| sz全讯网网址xb112| 百家乐官网赔率计算| 百家乐qq游戏| 大赢家百家乐官网66| 百家乐娱乐城体育| 江城足球网| 百家乐平台注册送现金| e乐博官网| 百家乐赌博器| 免费百家乐官网在线| pc百家乐模拟游戏| 潘多拉百家乐官网的玩法技巧和规则 | 云鼎百家乐代理| 金臂百家乐注册送彩金| 基础百家乐官网规则| 优博百家乐官网现金网平台|