波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Contact Information

General Enquiry

Fax: +(852)-3442-0688
Email: see.enquiry@cityu.edu.hk
Address: G5703, 5/F, Yeung Kin Man Academic Building (YEUNG),
City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong SAR
Nanoengineering Materials for Energy Applications
Speaker Name
Prof. Muhammet S. Toprak
Speaker Detail

Department of Applied Physics,
KTH Royal Institute of Technology, SE10691 Stockholm, Sweden

Date
Time
-
Venue
B5-309, 5/F, Yeung Kin Man Academic Building, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong

Organizer: School of Energy and Environment
City University of Hong Kong

Abstract

Nanotechnology has contributed to all levels of scientific and technological development. It enabled many of the current state-of-the art materials technologies for energy storage, conversion, conservation and energy efficiency. Our group focuses on the use of solution chemistry toolbox for the fabrication of inorganic materials with various complexities for a wide range of applications. These materials are then processed in solution or used as dry powder for the intended goal. This talk aims at giving an overview of the recent developments on the use of nanomaterials for energy related applications at KTH-Applied Physics. Some examples on material design on heat transfer surfaces, heat transfer fluids, thermoelectric energy harvesting, and solar energy conversion (photovoltaics) will be presented.

About the Speaker

Muhammet Toprak is Professor of Materials Chemistry at the Department of Applied Physics, KTH Royal Institute of Technology (Stockholm, Sweden), leading the subunit of Nanochemistry. He has D.Sc. in Materials Chemistry with extensive experience and recognition on fabrication and characterization of functional nanomaterials using solution-based chemical strategies. Prof. Toprak received his M.Sc. in inorganic chemistry from METU (Ankara, Turkey), PhD from KTH and postdoctoral research at University of California at Santa Barbara (CA, USA). His research focuses on the development and use of solution-based combinatorial synthetic strategies for the fabrication of inorganic nanomaterials and nanocomposites and their applications in the field of energy, environment, and medicine. He brings together an extraordinarily wide range of complementary skills in the design, fabrication, characterization, and testing of new materials with tailor-made properties for intended applications. Among the energy related topics thermoelectric materials have been an area where his group developed nano-TEs of several compositions with improved TE figure of merit. Recent work focused on design and fabrication of nanoparticles for high resolution XRF bio-imaging. He has led many national and international collaborative projects, authored more than 200 publications (journal and peer reviewed proceedings; h-index of 41 (web of science), started two spin-off companies and has collaborations with academia and industry. Besides the research activities he is teaching several courses in the International Master Program on Nanotechnology, specialising on Nanomaterials.

樱桃木百家乐官网桌| 百家乐官网视频官网| 百家乐如何看| 澳门网上博彩| 百家乐官网破解软件真的有用吗| 金都百家乐官网的玩法技巧和规则 | 缅甸百家乐赌博有假吗| 大发888下载ylc8| 易胜博百家乐官网作弊| 做生意摆放老虎好不好| 百家乐视频连线| 大发888娱乐城送白菜| 百家乐官网大赢家小说| 百家乐玩法窍门| 大发888线上| 电子百家乐官网博彩正网| 罗盘24山八卦| 大发888大发娱乐城| 百家乐官网赌神| 百家乐博牌规例| 漳浦县| 哪个百家乐投注比较好| 南通棋牌游戏中心| 八大胜百家乐官网的玩法技巧和规则| 百家乐官网百家乐官网游戏| 线上百家乐官网攻略| 百家乐官网赌博在线娱乐| 永利高百家乐怎样开户| 百家乐官网路单资料| 百家乐游戏机说明书| 新葡京网上娱乐| 百家乐所有技巧| 土默特左旗| 百家乐娱乐分析软件v4.0| 百家乐游戏厅| 百家乐官网官网站| 娱乐城注册送18| 三亚百家乐官网的玩法技巧和规则| 大发888 赌博网站大全| 吕百家乐官网赢钱律| 做生意招牌什么颜色旺财|