波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

CityU achieves major breakthrough in highly efficient electrocatalyst for clean energy

ADVERTISEMENT

A research team led by City University of Hong Kong (CityU) has achieved a groundbreaking advancement in nanomaterials by successfully developing a highly efficient electrocatalyst which can enhance the generation of hydrogen significantly through electrochemical water splitting. ?

Professor Zhang Hua

Credit: City University of Hong Kong

A research team led by City University of Hong Kong (CityU) has achieved a groundbreaking advancement in nanomaterials by successfully developing a highly efficient electrocatalyst which can enhance the generation of hydrogen significantly through electrochemical water splitting. ?

This major breakthrough has great application potential for the clean energy industry.?

Professor Zhang Hua, Herman Hu Chair Professor of Nanomaterials at CityU, and his team have developed an electrocatalyst by using the transition-metal dichalcogenide (TMD) nanosheets with unconventional crystal phases as supports. The electrocatalyst exhibits superior activity and excellent stability in electrocatalytic hydrogen evolution reaction in acidic media.

“Our research finding is significant in the sense that the hydrogen generated by electrochemical water splitting is regarded as one of the most promising clean energies to replace fossil fuels in the near future, reducing environmental pollution and the greenhouse effect,” said Professor Zhang.

This important finding has been published in the prestigious journal Nature with the title of “Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution”.?

Professor Zhang said the key to the research on electrocatalytic water splitting is to develop highly efficient and stable catalysts. It is of great significance to choose a suitable support to improve the activity and stability of catalysts during the process.?

As an emerging two-dimensional (2D) material, TMD nanosheets have been of great interest among researchers because of their unique physical and chemical properties.?It has been found that phase is an extremely important factor that determines the properties and functions of TMD nanosheets. For example, molybdenum disulfide (MoS2) with the conventional 2H phase exhibits a semiconductor property, while MoS2 with unconventional 1T or 1T′ phase shows metallic or semi-metallic property, thus possessing good conductivity. However, the production of unconventional-phase TMD nanosheets with high phase-purity and high quality remains challenging. The research on the effect of the TMD crystal phase on the growth of other materials is still at an early stage.

In recent years, Professor Zhang’s research team has developed a number of new methods, such as solid-gas reactions and salt-assisted synthesis, and has successfully prepared a number of high phase-purity and high-quality TMD crystal materials with unconventional 1T′ phase. Owing to their unique semi-metallic properties, these nanomaterials have great potential in applications in the fields of optoelectronic devices, catalysis, energy storage and superconductivity.

In this research, the team successfully developed a new method to prepare TMD nanosheets with unconventional phases. They also investigated the crystal phase-dependent growth of noble metals on 1T′-TMD and 2H-TMD nanosheets. They found that using the conventional 2H-TMD as a template, it facilitates the epitaxial growth of platinum (Pt) nanoparticles, whereas the unconventional 1T′-TMD template supports single-atomically dispersed Pt atoms (s-Pt). Based on these findings, the team developed the single-atomically dispersed Pt atoms/1T′ phase molybdenum disulfide (s-Pt/1T′-MoS2) catalyst.?

To overcome the mass transport limitation of Pt-based catalysts in electrocatalytic hydrogen evolution reactions in acid media, the team adopted an advanced floating electrode technology for testing. Their experimental results found that the s-Pt/1T′-MoS2 catalyst exhibited a high mass activity of 85±23 A mgPt-1?at an overpotential of ?50 mV and a mass-normalized exchange current density (127 A mgPt-1). Besides, the catalyst can work stably for 500 hours in a proton exchange membrane water electrolyser, showing promising application potential.

The team systematically investigated the phase-dependent growth of noble metals on 1T′-TMD and 2H-TMD nanosheets, and demonstrated that 1T′-TMD nanosheets can be effective supports for catalysts.

“The synthesized new electrocatalyst exhibits superior activity and excellent stability in electrocatalytic hydrogen evolution reaction in acidic media, and it will play an extremely important role in the development of clean energy in the future,” said Dr Shi Zhenyu, postdoc?at the Department of Chemistry and the first author of the paper. ?

The findings have expanded the scope of “Phase Engineering of Nanomaterials” (PEN), paving a new way for the design and synthesis of highly efficient catalysts. Professor Zhang said that in the future, the team will continue the research on 1T′-TMD-based catalyst and its prospects in industrial application, in order to contribute to clean energy and sustainable development.

The corresponding authors are Professor Zhang and Professor Anthony R. J. Kucernak from the Department of Chemistry, Imperial College London. This research project brought together collaborators from universities and research institutes in Hong Kong, mainland China, Singapore and the UK, showing the importance of international collaboration in achieving scientific breakthroughs.


Welcome Back!

Login to your account below

Retrieve your password

Please enter your username or email address to reset your password.

威尼斯人娱乐城活动lm0| 成都百家乐的玩法技巧和规则 | 神人百家乐赌场| 百家乐官网怎样算大小| 百家乐赌场破解| 百家乐打法| 百家乐开户优惠多的平台是哪家 | 大发888移动版| 24分金| 百家乐官网公式分析| 欧凯百家乐的玩法技巧和规则 | 阿拉善左旗| 百家乐平注法口诀技巧| 金银岛百家乐官网的玩法技巧和规则| 狼2老虎机清零密码| 风水24向吉项| 百家乐官网是不是有技巧| 大发888 没人举报吗| 网上百家乐有没有假| 大世界百家乐官网娱乐城| 谈大发888风水和运气| 赙彩百家乐游戏规则| 缅甸百家乐官网网上投注| 视频百家乐信誉| 百家乐官网打格式| 足球开户| 大发888娱乐城都有啥扑克牌游戏| 百家乐官网真人视频出售| 大发888娱乐城客户端下载| 百家乐赌场赌场网站| 24山入门| 百家乐官网赌场怎么玩| 大发888-娱乐场| 康莱德百家乐的玩法技巧和规则| 百家乐路单破解软件| 包赢百家乐官网的玩法技巧和规则 | 噢门百家乐官网玩的技巧| 济宁市| 威尼斯人娱乐城投注网| 南京百家乐赌博现场被抓| 法拉利百家乐官网的玩法技巧和规则|