波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Skip to main content

Uhlenbeck Compactness and Optimal Regularity in Lorentzian Geometry

Dr. Moritz Reintjes
Date & Time
16 Dec 2020 (Wed) | 03:00 PM - 04:00 PM
Venue
Online via ZOOM

Abstract

We resolve two problems of Mathematical Physics. First, we prove that any ?? ∞ connection ?? on the tangent bundle of an arbitrary differentiable manifold with ?? ∞ Riemann curvature can be smoothed by coordinate transformation to optimal regularity ?? ∈ ??1,?? , any ?? < ∞, (one derivative smoother than the curvature). This implies in particular that Lorentzian metrics ofshock wave solutions of the Einstein-Euler equations are non-singular---geodesic curves, locally inertial coordinates and the resulting Newtonian limit all exist in a classical sense. This result is based on a system of nonlinear elliptic partial differential equations, the Regularity Transformation equations, and an existence theory for them at the level of ?? ∞ connections. Secondly, we prove that this existence theory suffices to extend Uhlenbeck compactness from the case of connections on vector bundles over Riemannian manifolds, to the case of connections on tangent bundles of arbitrary manifolds, including Lorentzian manifolds of General Relativity.

Registration URL

https://cityu.zoom.us/meeting/register/tJwocuCtpz0pHtRREgAvv3c__6_3zB5CVaIw

[Zoom meeting link will be provided via email after registration.]

百家乐官网英皇娱乐平台| 百家乐官网大小桌布| 大发888新老虎机| 百家乐官网博之道娱乐城| 缅甸百家乐龙虎斗| 百家乐官网哪条路好| 百家乐的出牌技巧| 百家乐官网最大的赌局| A8百家乐娱乐平台| 皇冠网都市小说| 百家乐等投注网改单| 澳门百家乐官网怎赌才能赚钱| 百家乐官网视频免费下载| 利都百家乐国际娱乐场开户注册 | 大发888体育注册| 个体老板做生意的风水| 真人百家乐平台排行| 百家乐官网赌经| 零点棋牌下载| 网上百家乐庄家有赌场优势吗| 谈谈百家乐官网赢钱技巧| 永利高a1| 百家乐为什么庄5| 百家乐官网麻关于博彩投注| 棋牌室管理制度| 百家乐视频游戏盗号| E乐博百家乐官网娱乐城| E世博| 澳门百家乐网上娱乐场开户注册| 巴比伦百家乐官网的玩法技巧和规则| 宁明县| 蜀都棋牌游戏大厅| 八大胜百家乐的玩法技巧和规则| 乐百家乐彩娱乐城| 大发888 58| 百家乐l路单| 百家乐庄不连的概率| 赌场百家乐官网怎么破解| 百家乐官网新台第二局| 百家乐平台| 亿乐棋牌游戏大厅|