波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Skip to main content

Stochastic Differential Games with Random Coefficients and Stochastic Hamilton-Jacobi-Bellman-Isaacs Equations

Dr Jing Zhang
Date & Time
16 Aug 2023 (Wed) | 10:30 AM - 11:30 AM
Venue
Online via Zoom
https://nus-sg.zoom.us/j/87645650702?pwd=OWUyODF5alBFSExPL0pzcEJIblh0Zz09

ABSTRACT

In this paper, we study a class of zero-sum two-player stochastic differential games with the controlled stochastic differential equations and the payoff/cost functionals of recursive type. As opposed to the pioneering work by Fleming and Souganidis (Indianna Univ. Math.J., 38(1989), pp.~293-314) and the seminal work by Buckdahn and Li (SIAM J. Control Optim., 417 (2008), pp.~444-475), the involved coefficients may be random, going beyond the Markovian framework and leading to the random upper and lower value functions. We first prove the dynamic programming principle for the game, and then under the standard Lipschitz continuity assumptions on the coefficients, the upper and lower value functions are shown to be the viscosity solutions of the upper and the lower fully nonlinear stochastic Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, respectively. A stability property of viscosity solutions is also proved. Under certina additional regularity assumptions on the diffusion coefficient, the uniqueness of the viscosity solution is addressed as well.

万宝路百家乐官网的玩法技巧和规则 | 澳门百家乐加盟| 大发888在线注册| 百家乐官网如何骗人| 百家乐凯时娱乐场| 百家乐官网如何洗吗| 九乐棋牌下载| 贵族百家乐的玩法技巧和规则 | 百家乐怎么玩了| 同乐城娱乐城| 百家乐的代理办法| 科技| 利都百家乐国际娱乐场开户注册| 六合彩脑筋急转弯| 百家乐二十一点游戏| 百家乐官网沙| bet365取消提款| 澳门百家乐职业赌客| 百家乐官网鞋业| 澳门娱乐在线| 银河百家乐的玩法技巧和规则| 五指山市| 百家乐赌场技巧网| 百家乐官网大西洋城| 太阳城娱乐城网站| 网址百家乐的玩法技巧和规则 | 老虎百家乐的玩法技巧和规则| 宣城市| 362百家乐的玩法技巧和规则| 百家乐官网注册开户| 明陞百家乐娱乐城| 百家乐官网赌博工具| 顶级赌场官方网站| 至尊百家乐赌场娱乐网规则| 最佳场百家乐官网的玩法技巧和规则 | 乐天堂百家乐娱乐平台| 百家乐官网发牌| 百家乐官网现金投注信誉平台| 高科技百家乐牌具| 太阳百家乐官网管理网| 百家乐官网打鱼秘籍|