波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Skip to main content

Finite element schemes and mesh smoothing for geometric evolution problems

Prof. Bjorn STINNER
Date & Time
20 Mar 2025 (Thu) | 05:00 PM - 06:00 PM
Venue
B5-311 Yeung Kin Man Academic Building

ABSTRACT

Geometric evolutions can arise as part of reduced models or fundamental building blocks in various applications with moving boundaries and time-dependent domains, such as grain boundaries in materials or deforming cell boundaries. Mesh-based methods require adaptation and smoothing, particularly in the case of strong deformations. We consider finite element schemes based on classical approaches for geometric evolution equations but augmented with the gradient of the Dirichlet energy or a variant of it, which is known to produce a tangential mesh movement beneficial for the mesh quality. We focus on the one-dimensional case, where convergence of semi-discrete schemes can be proved, and discuss two cases. For networks forming triple junctions, it is desirable to keep the impact any additional, mesh smoothing terms on the geometric evolution as small as possible, which can be achieved with a perturbation approach. Regarding the elastic flow of curves, the Dirichlet energy can serve as a replacement of the usual penalty in terms of the length functional in that, modulo rescaling, it yields the same minimizers in the long run.

 

 

大发888备用a99.com| 网上百家乐官网信誉度| 百家乐娱乐下载| 百家乐官网游戏打水方法| 六合彩官网| 玩百家乐官网请高手指点| 德州扑克的规则| 狮威百家乐官网娱乐平台| 大发888娱乐平台下注| 百家乐游戏群号| 网上百家乐官网开户送现金| 太阳城丝巾| 百家乐官网赌场代理荐| 大发888代充值存款| 太阳城百家乐币| 在线百家乐官网怎么下注| 诸子百家乐的玩法技巧和规则| 哪个百家乐官网玩法平台信誉好| 威尼斯人娱乐场钓鱼网站| 网上百家乐官网如何打水| 莆田棋牌迷游戏中心| 澳门百家乐娱乐场开户注册| 太阳城百家乐官网杀猪吗| 娱乐城免费送体验金| 破解百家乐真人游戏| 网上赌百家乐官网的玩法技巧和规则| 百家乐官网注码调整| 德州扑克英文| 百苑百家乐的玩法技巧和规则 | 莆田棋牌游戏| 大佬百家乐的玩法技巧和规则| 高尔夫百家乐官网的玩法技巧和规则 | 百家乐官网java| 百家乐官网怎么投注| 大发888全部的网站地址| 百家乐2号破解下载| 百家乐官网娱乐网网77scs| 兴国县| 姚记娱乐城官网| 新利线上娱乐| 联众棋牌游戏大厅|