波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Skip to main content

Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

Professor Mikhail V. Kilbanov
Date & Time
17 May 2023 (Wed) | 11:00 AM - 12:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/tJIudOCoqDojEtTSnmFHPxvZSVuBmAmeOPSn

ABSTRACT

The convexification method of the presenter is the single numerical method with the global convergence property for coefficient inverse problems with non-overdetermined data. It is applicable to a broad class of Coefficient Inverse Problems, The key is the Carleman Weight Function, which is involved in the resulting cost functional. We will present this method for a Coefficient Inverse Problem for the radiative transport equation (co-authors Professor Jingzhi Li and Doctor Zhipeng Zhang). Next, we will present both Holder and Lipschitz stability estimates for a Coefficient Inverse Problem for the parabolic equation with the final overdetermination. Finally, we will present Lipschitz stability estimate for a problem of Mean Field Games. If time will allow, then we will discuss other results, which we have recently obtained for other problems of mean field games, see five most recent preprints at https://arxiv.org/search/?query=Klibanov&searchtype=all&source=header

名人百家乐的玩法技巧和规则| 阿玛尼百家乐的玩法技巧和规则| 乐百家乐彩娱乐城| 将军百家乐官网的玩法技巧和规则| 24山向与周天360度关系示意图| 大发888加盟合作| 百家乐官网海滨网现场| 香港六合彩挂牌| 大发888娱乐场注册| 克东县| 马牌百家乐官网的玩法技巧和规则 | 尊龙百家乐娱乐网| 上饶市| 百家乐轮盘怎么玩| 澳门百家乐心理| 伊春市| 3U百家乐的玩法技巧和规则| 德州扑克教学| 發中發百家乐官网的玩法技巧和规则| A8百家乐娱乐| 最好的百家乐官网博彩网站 | 金银岛百家乐官网的玩法技巧和规则 | 峨眉山市| 百家乐正品地址| 威尼斯人娱乐城代理| 百家乐官网谋略| 中国足球竞猜| 百家乐改单软件| 百家乐官网精神| 百家乐霸王闲| 百家乐官网游戏下裁| 大发888充钱| 百家乐分路单析器| 网络百家乐必胜投注方法| 百家乐官网群东方鸿运| 大发888电话客服| 百家乐官网最大的赌局| 淘金盈娱乐城| 玩百家乐技巧看| 百家乐天上人间| 百家乐官网博彩平台|