波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Skip to main content

On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations

Dr. Gerg? Nemes
Date & Time
21 Nov 2023 (Tue) | 10:00 AM - 11:00 AM
Venue
Y5-203, Yeung Kin Man Academic Building

ABSTRACT

We will consider a class of $n$th-order linear ordinary differential equations with a large parameter $u$. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of $u$. We shall demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter $u$ in large, unbounded domains of the independent variable. We will establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to a third-order Airy-type equation.

 

阳宅24山流年吉凶方位| 淘金百家乐官网现金网| 筹码币百家乐麻将| 二八杠网站| 现场百家乐官网平台源码| 12倍百家乐秘籍| 大方县| 百家乐官网的玩法技巧和规则| 水果机游戏| 百家乐官网998| 1368棋牌游戏平台| 百家乐官网电投软件| 百家乐平客户端| 百家乐官网赌术大揭秘| 大发888游戏平台188| 请问下百家乐官网去哪个娱乐城玩最好呢| 为什么百家乐玩家越来越多选择网上百家乐 | 百家乐庄闲多少| 哪里有百家乐官网代理| 新全讯网网站| 真人百家乐分析软件是骗局| 大发888娱乐日博备用| 百家乐群东方鸿运| 剑河县| 百家乐百家乐技巧| 哪个百家乐投注好| 游戏百家乐官网押金| 泰顺县| bet365滚球| 百家乐筹码皇冠| 百家乐的玩法视频| 百家乐官网打水论坛| 分宜县| 大发888娱乐城casino| MG百家乐大转轮| 百家乐官网玩揽法的论坛| 大发888boaicai| 豪杰百家乐游戏| 百家乐官网出千技巧| 金冠娱乐城怎么样| 新梦想百家乐的玩法技巧和规则 |