波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

百家乐经验之谈| 百家乐庄闲的比例| 百家乐官网娱乐真人娱乐| 骰子百家乐的玩法技巧和规则| 真人百家乐信誉| 娱乐城注册体验金| 百家乐有多少网址| 网络篮球投注| 澳门百家乐网站bt| 百家乐官网二代皇冠博彩| 波音百家乐自动投注| 利记娱乐场| 新澳门百家乐的玩法技巧和规则| 天祝| 百家乐顶路| 诚信百家乐官网在线平台| 大发888大发888娱乐城| 百家乐官网新送彩金| 海口市| 全讯网备用网址| 什么风水适合做生意| 百家乐官网娱乐城足球盘网| 大发888老虎机平台| 百家乐游戏机分析仪| 广东百家乐官网桌布| 景泰县| 如何胜百家乐的玩法技巧和规则| 绿春县| 全讯网qtqnet| 沙龙百家乐娱乐场开户注册| 正宗杨公风水24山分金| 赌场百家乐官网赌场| 华阴市| 亿酷棋牌世界下载| 百家乐官网玩法简介| 百家乐金海岸| 百家乐合作代打| 金城百家乐官网买卖路| 赌场少女| 天空娱乐城| 亚洲顶级赌场手机版|