波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture
20221114
Published on nature energy (14 November 2022)
 

Author(s): Kui Jiang, Jie Zhang, Cheng Zhong, Francis R. Lin, Feng Qi, Qian Li, Zhengxing Peng, Werner Kaminsky, Sei-Hum Jang, Jianwei Yu, Xiang Deng, Huawei Hu, Dong Shen, Feng Gao, Harald Ade, Min Xiao, Chunfeng Zhang, Alex K.-Y. Jen

 
Abstract

At present, high-performance organic photovoltaics mostly adopt a bulk-heterojunction architecture, in which exciton dissociation is facilitated by charge-transfer states formed at numerous donor–acceptor (D-A) heterojunctions. However, the spin character of charge-transfer states originated from recombination of photocarriers allows relaxation to the lowest-energy triplet exciton (T1) at these heterojunctions, causing photocurrent loss. Here we find that this loss pathway can be alleviated in sequentially processed planar–mixed heterojunction (PMHJ) devices, employing donor and acceptor with intrinsically weaker exciton binding strengths. The reduced D-A intermixing in PMHJ alleviates non-geminate recombination at D-A contacts, limiting the chance of relaxation, thus suppressing T1 formation without sacrificing exciton dissociation efficiency. This resulted in devices with high power conversion efficiencies of >19%. We elucidate the working mechanisms for PMHJs and discuss the implications for material design, device engineering and photophysics, thus providing a comprehensive grounding for future organic photovoltaics to reach their full promise.

 

20221114

a, Illustration of excited-state dynamics in OPV: (1) photoexcitation of singlet excitons: S0→LE; (2, 4) transfer pathways of photoexcited singlet excitons: LE→1CT (2) and LE→DSE (4); (3, 5) dissociation of loosely bound singlet excitons into free charges: 1CT→CS (3) or DSE→CS (5); (6, 7) CT states formation through non-geminate recombination: CS→1CT/3CT, possibly with 1CT/3CT→CS repopulation and spin-allowed 1CT→S0 relaxation; (8) 3CT→T1 relaxation, where further T1→S0 relaxation can happen via triplet-charge annihilation, leading to permanent loss of photocarriers. b, Molecular structures of D18 and two major NFAs used in this study. c, Thin-film optical absorption of D18, NFAs and D18/NFA PMHJ blends. d, Energy level diagram of materials (IP: ionization potential corresponding to the highest occupied molecular orbital energy level; EA: electron affinity corresponding to the lowest unoccupied molecular orbital energy level.). e, ToF-SIMS Se2? ion yield of D18/T9SBN-F PMHJ and D18:T9SBN-F BHJ blends plotted over sputtering time. The inset shows the schematic illustration of PMHJ and BHJ blends.

Read more: https://www.nature.com/articles/s41560-022-01138-y#Fig1

 
 
 
 
 
 
 
 
百家乐官网最好的投注方法| 百家乐官网视频麻将| 88百家乐现金网| 百家乐官网有无规律可循| 百家乐官网国际娱乐城| 大发888扑克官方下载| 百家乐官网tie| 大发888娱乐城下| 百家乐单机版游戏下载| 百家乐庄的概率| 百家乐官网tt娱乐平台| 真让百家乐官网游戏开户| 易胜博百家乐官网输| 在线百家乐纸牌游戏| 百家乐官网下载免费软件| 大发888信誉娱乐城管理| 百家乐乐城皇冠| 求购百家乐官网程序| 百家乐网娱乐城| 网上百家乐官网内幕| 百家乐合作| 真人百家乐官网作| 云顶国际网| 百家乐正负计算| 澳门百家乐线上娱乐城| 百家乐官网赌场群| 足球投注网址| 新全讯网353788| 金博士百家乐娱乐城 | 新金润娱乐城| 百家乐必胜打| 大世界百家乐现金网| 青鹏百家乐官网游戏币 | 网上百家乐官网洗码技巧| 大发888注册送28| 博彩百家乐网址| 百家乐官网机器图片| 百家乐官网公式分析| 六合彩现场开奖结果| 威尼斯人娱乐城海立方| 玩百家乐的高手|