波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

闲和庄百家乐娱乐网| 百家乐变牌器| 聚众玩百家乐官网的玩法技巧和规则| 真人游戏网站| 金彩百家乐官网的玩法技巧和规则| 麻将二八杠技巧| 名人百家乐官网的玩法技巧和规则| 娱乐城送| 百家乐网站出售| 浑源县| 成都百家乐的玩法技巧和规则| 沙龙百家乐娱乐场开户注册| 真人百家乐官网输钱惨了| 百家乐真人游戏娱乐平台| 澳门百家乐官网赌客| 大发888亚付宝充值| 百家乐实战路| 在线百家乐官网平台| 大发888游戏充值50| 葡京百家乐注码| 百家乐官网赌博千术| 大发888娱乐城维护| 百家乐三珠连跳打法| 百家乐官网永利赌场娱乐网规则 | 任你博百家乐现金网| 百家乐官网讯特| 皇冠网投| 大发888娱乐场168| 百家乐游戏玩法技巧| 百家乐官网时时彩网站| 山阴县| 晓游棋牌游戏大厅下载| 游戏百家乐的玩法技巧和规则| 24山向中那个向最好| 百家乐官网赌博走势图| 弥渡县| 明升88备用| 大发888游戏代充| 荷规则百家乐的玩法技巧和规则| 至尊百家乐官网| 金博士百家乐官网的玩法技巧和规则|