波音游戏源码-波音博彩公司评级_百家乐园天将_新全讯网3344111.c(中国)·官方网站

Eng · 繁體 · 簡體

 [   ] 

Dr. GAO Siyang (高思陽博士)

BS(PKU), PhD(Univ of Wisconsin)

Associate Professor

Contact Information

Office:  AC1-P6611
Phone: 34424759
Email: siyangao@cityu.edu.hk
Web: Google Scholar

Research Interests

  • Simulation modeling and optimization
  • Large language models
  • Machine learning
  • Healthcare management
Dr. Siyang Gao received a B.S. in Statistics and Probability from School of Mathematics at Peking University in 2009 and a Ph.D. in Industrial Engineering at University of Wisconsin-Madison in 2014. His research interests include simulation modeling and optimization, applied probability, machine learning, and healthcare management.


Publications Show All Publications Show Prominent Publications


Journal

  • Du, J. , Gao, S. & Chen, C.-H. (in press). A contextual ranking and selection method for personalized medicine. Manufacturing & Service Operations Management.
  • Li, Y. , Gao, S. & Shi, Z. (2023). Asymptotic optimality of myopic ranking and selection procedures. Automatica. 151. 110896 .
  • Li, C. , Gao, S. & Du, J. (2023). Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates. INFORMS Journal on Computing. 35(2). 386 - 402.
  • Li, Y. & Gao, S. (2023). Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms. Automatica. 153. 111042 .
  • Chen, W. , Gao, S. , Chen, W. & Du, J. (2023). Optimizing Resource Allocation in Service Systems via Simulation: A Bayesian Formulation. Production and Operations Management. 32(1). 65 - 81.
  • Gao, F. , Shi, Z. , Gao, S. & Xiao, H. (2019). Efficient simulation budget allocation for subset selection using regression metamodels. Automatica. 106. 192 - 200.
  • Gao, S. , Shi, L. & Zhang, Z. (2018). A peak-over-threshold search method for global optimization. Automatica. 89. 83 - 91.
  • Xiao, H. & Gao, S. (2018). Simulation budget allocation for selecting the top-m designs with input uncertainty. IEEE Transactions on Automatic Control. 63(9). 3127 - 3134.
  • Gao, S. , Chen, W. & Shi, L. (2017). A new budget allocation framework for the expected opportunity cost. Operations Research. 65. 787 - 803.
  • Gao, S. & Chen, W. (2017). A partition-based random search for stochastic constrained optimization via simulation. IEEE Transactions on Automatic Control. 62. 740 - 752.
  • Gao, S. & Chen, W. (2017). Efficient feasibility determination with multiple performance measure constraints. IEEE Transactions on Automatic Control. 62. 113 - 122.
  • Gao, S. , Xiao, H. , Zhou, E. & Chen, W. (2017). Robust ranking and selection with optimal computing budget allocation. Automatica. 81. 30 - 36.
  • Xiao, H. & Gao, S. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica. 84. 117 - 127.
  • Gao, S. & Chen, W. (2016). A new budget allocation framework for selecting top simulated designs. IIE Transactions. 48. 855 - 863.
  • Gao, S. & Chen, W. (2015). Efficient subset selection for the expected opportunity cost. Automatica. 59. 19 - 26.
  • Gao, S. & Shi, L. (2015). Selecting the best simulated design with the expected opportunity cost bound. IEEE Transactions on Automatic Control. 60(10). 2785 - 2790.

Conference Paper

  • Chen, S. , Xiong, M. , Liu, J. , Wu, Z. , Xiao, T. , Gao, S. & He, J. (in press). In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation. 41st International Conference on Machine Learning (ICML).
  • Yu, Z. , Dai, L. , Xu, S. , Gao, S. & Ho, C. (2023). Fast Bellman updates for Wasserstein distributionally robust MDPs. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 30554 - 30578).
  • Chen, S. , Zhao, Y. , Zhang, J. , Chern, I.-C. , Gao, S. , Liu, P. & He, J. (2023). FELM: Benchmarking factuality evaluation of large language lodels. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 44502 - 44523).
  • Yang, L. , Gao, S. & Ho, C. (2023). Improving the knowledge gradient algorithm. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 61747 - 61758).
  • Li, Y. & Gao, S. (2022). On the finite-time performance of the knowledge gradient algorithm. 39th International Conference on Machine Learning (ICML). (pp. 12741 - 12764).


External Services


Professional Activity

  • 2021 - Now, Associate editor, IEEE Transactions on Automation Science and Engineering.
  • 2021 - Now, Associate editor, Journal of Simulation.


For prospective students

  • I am looking for qualified Ph.D. students (with strong background in mathematics, probability and statistics) to do research in simulation optimization and machine learning. If you are interested, please send your CV and transcript to my email (siyangao@cityu.edu.hk) for consideration.


Links



Last update date : 19 May 2024
实战百家乐官网博彩正网| 真人百家乐官网蓝盾娱乐平台 | 明升百家乐官网QQ群| 百家乐记算| 百家乐官网平注胜进与负追| 大发888线上娱乐百家乐| 赌场百家乐官网代理| 神娱乐百家乐的玩法技巧和规则| 澳门百家乐赢钱公式不倒翁| r百家乐官网娱乐下载| 百家乐试玩| 多伦多百家乐官网的玩法技巧和规则 | 全讯网址| 金花百家乐官网娱乐城| 大发888网页游戏| 澳门百家乐现场游戏| 百家乐官网的最佳玩| 二八杠视频| 百家乐怎么开户| 百家乐官网平注法攻略| 化德县| 棋牌评测网| 威尼斯人娱乐城网站| 百家乐游戏制作| 易赢百家乐软件| 田林县| 博彩老头排列三| 荷规则百家乐的玩法技巧和规则| 百家乐官网赌博规| 百家乐官网官方网址| 德州扑克 下载| 百家乐博弈指| 免费百家乐在线| 广州百家乐官网娱乐场开户注册| 百家乐官网视频游戏冲值| 平顶山市| 三晋棋牌中心| 棋牌游戏平台开发| 大发888大家赢娱乐| 德州百家乐21点桌| 百家乐娱乐平台开户|