| |
|
||
Radiation Biophysics
Our current radiation biophysics research mainly focuses on two areas, namely, (1) studying in vivo radiobiological effects using zebrafish embryos, and (2) rescue effect.
| Resources | |||||
|
Review paper:
Lam, R.K.K., Fung, Y.K., Han, W., Yu, K.N., 2015. Rescue effects:
Irradiated cells helped by unirradiated bystander cells. International
Journal of Molecular Sciences 16, 2591-2609.
(download
pdf version) |
|||||
|
Review paper:
Choi, V.W.Y., Yu, K.N. 2015.
Embryos of the zebrafish Danio rerio in
studies of non-targeted effects of ionizing radiation. Cancer Letters
356 (2015) 91-104.
(download
pdf version) |
Review paper: Wang, H., Yu, K.N., Hou, J., Liu, Q., Han, W., 2015. Radiation-induced bystander effect: Early process and rapid assessment. Cancer Letters 356, 137-144. (download pdf version) | ||||
|
|
||||
|
|
|
Studying in vivo radiobiological effects using zebrafish embryos |
|||||||
|
Rescue effects |
|||||||
![]() |
Rescue effect is closely related to a more extensively studied non-targeted effect of ionizing radiation known as radiation-induced bystander effect (RIBE), which was first observed in in vitro experiments. RIBE in cells referred to the phenomenon that unirradiated cells responded as if they had been irradiated after they had partnered with the irradiated cells or after they had been treated with the medium previously conditioning the irradiated cells. To date, two mechanisms underlying RIBE have been widely accepted, namely, (1) gap junction intercellular communication (GJIC) in the presence of physical contacts among the cells, and (2) communication of soluble signal factors among the cells through the shared medium. Various soluble signal factors that participate in RIBE have been proposed, including tumor necrosis factor-a (TNF-a), transforming growth factor-b1 (TGF-b1), interleukin-6 (IL-6), interleukin-8 (IL-8), nitric oxide (NO) and reactive oxygen species (ROS). The rescue effect describes the phenomenon where irradiated cells or irradiated organisms derive benefits from the feedback signals released from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation induced DNA damages. Our group [1] discovered the rescue effect where the bystander cells, through sending intercellular feedback signals to the irradiated cells, mitigated the effects originally induced in the irradiated cells directly by the radiation. We [1] found that the rescue effect reduced (1) the DNA double strand breaks (DSBs) surrogated by the numbers of p53-binding protein 1 (53BP1) foci, (2) the genomic instability surrogated by the number of micronucleus (MN) formation, and (3) extent of apoptosis in the irradiated cells. In particular, we also revealed that unirradiated normal cells could rescue irradiated cancer cells.
[1]
|
||||||
|
|||||||
|
Publications on rescue effect (By our group)
(By other groups) 1. Widel, M., Przybyszewski, W.M., Cieslar-Pobuda, A., Saenko, Y.V., Rzeszowska-Wolny, J. 2012. Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation. Mutation Research 731, 117-124. 2. Pereira, S., Malard, V., Ravanat, J.-L., Davin, A.-H., Armengaud, J., Foray, N., Adam-Guillermin, C., 2914, Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS ONE 9, e92974. 3. Desai, S., Kobayashi, A., Konishi, T., Oikawa, M., Pandey, B.N., 2014. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutation Research 763-764, 39-44. 4. He, M., Dong, C., Xie, Y., Li, J., Yuan, D., Bai, Y., Shao, C., 2014. Reciprocal bystander effect between a-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway. Mutation Research 763-764, 1-9. 5. Widel, M., Lalik, A., Krzywon, A., Poleszczuk, J., Fujarewicz, K., Rzeszowska-Wolny, J., 2015. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutation Research 778, 61-70. 6. Liu, Y., Kobayashi, A., Fu, Q., Yang, G., Konishi, T., Uchihori, Y., Hei, T.K., Wang, Y., 2015. Rescue of Targeted Nonstem-Like Cells from Bystander Stem-Like Cells in Human Fibrosarcoma HT1080. Radiation Research 184, 334-340. 7. Fu, J., Yuan, D., Xiao, L., Tu, W., Dong, C., Liu, W., Shao, C., 2015. The crosstalk between a-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-kB signaling pathways, Mutation Research (in press) http://dx.doi.org/10.1016/j.mrfmmm.2015.11.001 |
|||||||
Back to Radiation Biophysics page
|
Nuclear Radiation Unit |
Page last modified on 3-Jul-2017 Privacy Policy - Copyright - Disclaimer
|
济州岛百家乐的玩法技巧和规则| 百家乐游戏机破解方法| 百家乐官网上海代理| 运城百家乐蓝盾| 百家乐官网洗码方法| 澳门百家乐实战| 来博百家乐官网现金网| 百家乐的各种打法| 百家乐官网最好的投注方法| 百家乐群的微博| 路单百家乐官网的玩法技巧和规则| 大发888平台啥时候最赢钱| 无锡百家乐官网的玩法技巧和规则 | 百家乐官网怎么赢9| 贵宾百家乐的玩法技巧和规则| 百家乐官网现金平台排名| 百家乐EA平台| 玩百家乐官网如何看路| 大发888下载安装包| 太阳城百家乐币| 百家乐官网怎么玩了| 威尼斯人娱乐城真钱游戏| 做生意家里摆什么招财| 至尊百家乐官网qvod| 免费百家乐预测| 神人百家乐官网赌博| 甘洛县| 大发888亚洲游戏下载| 在线龙虎斗| 百家乐怎么赢对子| 网上百家乐官网的玩法技巧和规则 | 浩博百家乐娱乐城| 百家乐官网扑克桌| 百家乐官网玩法窍门| 德州扑克单机| 为什么百家乐玩家越来越多选择网上百家乐 | 百家乐官网国际娱乐场开户注册 | 亲朋棋牌捕鱼技巧| 百家乐平台送彩金| 博久百家乐论坛| 百家乐官网大路图|